Ranger 6
|
Instruments |
Television: |
transmit closeup pictures of the lunar surface |
|
Ranger 6 was designed to achieve a lunar impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact. The spacecraft carried six television vidicon cameras, 2 wide angle (channel F, cameras A and B) and 4 narrow angle (channel P) to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality Television pictures. No other experiments were carried on the spacecraft. Due to a failure of the camera system no images were returned.
Spacecraft design
Rangers 6, 7, 8, and 9 were so-called Block III versions of the Ranger spacecraft. The spacecraft consisted of a hexagonal aluminum frame base 1.5 m across on which was mounted the propulsion and power units, topped by a truncated conical tower which held the TV cameras. Two solar panel wings, each 739 mm wide by 1537 mm long, extended from opposite edges of the base with a full span of 4.6 m, and a pointable high gain dish antenna was hinge mounted at one of the corners of the base away from the solar panels. A cylindrical quasiomnidirectional antenna was seated on top of the conical tower. The overall height of the spacecraft was 3.6 m.
Propulsion for the mid-course trajectory correction was provided by a 224 N thrust monopropellant hydrazine engine with 4 jet-vane vector control. Orientation and attitude control about 3 axes was enabled by 12 nitrogen gas jets coupled to a system of 3 gyros, 4 primary Sun sensors, 2 secondary Sun sensors, and an Earth sensor. Power was supplied by 9792 Si solar cells contained in the two solar panels, giving a total array area of 2.3 square meters and producing 200 W. Two 1200 watt.hour AgZnO batteries rated at 26.5 V with a capacity for 9 hours of operation provided power to each of the separate communication/TV camera chains. Two 1000 watt-hour AgZnO batteries stored power for spacecraft operations.
Communications were through the quasiomnidirectional low-gain antenna and the parabolic high-gain antenna. Transmitters aboard the spacecraft included a 60 W TV channel F at 959.52 MHz, a 60 W TV channel P at 960.05 MHz, and a 3 W transponder channel 8 at 960.58 MHz. The telecommunications equipment converted the composite video signal from the camera transmitters into an RF signal for subsequent transmission through the spacecraft high-gain antenna. Sufficient video bandwidth was provided to allow for rapid framing sequences of both narrow- and wide-angle television pictures.
Mission profile
Ranger 6 was launched into an Earth parking orbit and injected on a lunar trajectory by a second Agena burn. The midcourse trajectory correction was accomplished early in the flight by ground control. On February 2, 1964, 65.5 hours after launch, Ranger 6 impacted the Moon on the eastern edge of Mare Tranquillitatis (Sea of Tranquility). The orientation of the spacecraft to the surface during descent was correct, but no video signal was received and no camera data obtained. A review board determined the most likely cause of failure was due to an arc-over in the TV power system when it inadvertently turned on for 67 seconds approximately 2 minutes after launch during the period of booster-engine separation.
This fourth American attempt at lunar impact was the closest success. The spacecraft, the first Block III type vehicle with a suite of six TV cameras, was sterilized to avoid contaminating the lunar surface. The series would also serve as a test bed for future interplanetary spacecraft by deploying systems (such as solar panels) that could be used for more ambitious missions. The Block III spacecraft carried a 173-kilogram TV unit (replacing the impact capsule carried on the Block II Ranger spacecraft). The six cameras included two full-scan and four partial-scan cameras. Ranger 6 flew to the Moon successfully and impacted precisely on schedule at 09:24:32 UT on 2 February. Unfortunately, the power supply for the TV camera package had short-circuited three days previously during Atlas booster separation and left the system inoperable. The cameras were to have transmitted high-resolution photos of the lunar approach from 1,448 kilometers to 6.4 kilometers range in support of Project Apollo. Impact coordinates were 9°24' north latitude and 21°30' east longitude.
See also
External links
|
|
NRL PL135 · GGSE-1 · Solrad 7A · SECOR-1 | OPS 3367A · OPS 3367B | Relay 2 | Echo 2 | Jupiter Nosecone | Elektron-1 · Elektron-2 | Ranger 6 | OPS 3444 | Venera 3MV-1 No.2 | Kosmos 25 | OPS 2423 | OPS 3722 | OPS 3435 | Kosmos 26 | BE-A | Luna E-6 No.6 | OPS 3467 | Kosmos 27 | Ariel 2 | Zond 1 | Kosmos 28 | Gemini 1 | Polyot 2 | Luna E-6 No.5 | Transit 5BN-3 · Transit 5E-4 | OPS 3743 | Kosmos 29 | OPS 2921 | Kosmos 30 | OPS 3592 | Apollo A-102 | OPS 4412 | OPS 3483 | Molniya-1 No.2 | Kosmos 31 | Kosmos 32 | OPS 3236 | OPS 4467A · OPS 4467B | OPS 3754 | Kosmos 33 | ESRS | Atlas-Centaur 3 | Kosmos 34 | OPS 3395 | OPS 3684 · OPS 4923 | Elektron-3 · Elektron-4 | OPS 3491 | Kosmos 35 | OPS 3662 · OPS 3674 · ERS-13 | Ranger 7 | Kosmos 36 | OPS 3042 | Kosmos 37 | OPS 3802 · OPS 3216 | Kosmos 38 · Kosmos 39 · Kosmos 40 | Syncom 3 | OPS 2739 | OPS 2739 | Kosmos 41 | Kosmos 42 · Kosmos 43 | Kosmos 44 | Titan 3A-2 | OGO-1 | Kosmos 45 | OPS 3497 | Apollo A-102 | OPS 4262 | Kosmos 46 | Explorer 21 | OPS 3333 | Kosmos 47 | OPS 5798 · Dragsphere 1 · Dragsphere 2 | OPS 4036 | Explorer 22 | Voskhod 1 | Kosmos 48 | OPS 3559 | Strela-1 No.6 · Strela-1 No.7 · Strela-1 No.8 | OPS 4384 · OPS 5063 | Kosmos 49 | Kosmos 50 | OPS 5434 | OPS 3062 | Mariner 3 | Explorer 23 | OPS 3360 | Explorer 24 · Explorer 25 | Mariner 4 | Zond 2 | DS-2 No.2 | OPS 4439 | Kosmos 26 | Titan 3A-1 | Surveyor Mass Model | OPS 6582 · Transit 5E-5 | San Marco 1 | OPS 3358 | Explorer 26 | OPS 3762
|
|
Payloads are separated by bullets ( · ), launches by pipes ( | ). Manned flights are indicated in bold text. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets.
|
|